
Chapter 9

Unsupervised machine
learning

Unsupervised machine learning (a.k.a. cluster analysis) is a set of meth-
ods to assign objects into clusters under a predefined distance measure
when class labels are unknown. Unsupervised machine analysis is usually
more difficult than supervised machine learning because the class labels
are unknown and consequently the performance and statistical properties
of the methods are difficult to assess. Below we will introduce a few topics
and methods that are useful in high-throughput genomic data analysis.

9.1 Distance and similarity measure

??check Chapter 6 of Modern Multidimensional Scaling by Borg and
Groenen.

For any cluster analysis to work, a distance or dissimilarity measure
should be defined so that cluster algorithms can assign objects near from
each other into a cluster. Below, we describe a few types of distance
measures and similarity measures. Taking expression microarray data as
an example, denote by xgs the expression intensity of gene g and sample
s (1 ≤ g ≤ G, 1 ≤ s ≤ S). Denote by xg the intensity vector of gene g:
xg = {xg1, xg2, · · · , xgS}.
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9.1.1 Distance measures

Minkowski distance The Minkowski family of distance measures are
defined for two gene vectors xgi and xgj as

d(xgi , xgj ) =

(
S∑
s=1

|xgis − xgjs|k
)1/k

for some integer k. Three commonly used distances follow below.
Manhattan distancess (a.k.a. city-block distance) (k = 1):

d(xgi , xgj ) =

S∑
s=1

|xgis − xgjs|

Euclidean distance (k = 2):

d(xgi , xgj ) =

(
S∑
s=1

|xgis − xgjs|2
)1/2

Maximum distance (k =∞; see exercise 1):

d(xgi , xgj ) = max
s
|xgis − xgjs|

Note that these distances are scale-dependent. For example, if the in-
tensities are not properly normalized across arrays, some arrays with
brighter signals (higher intensities) tend to dominate the analysis. The
equal-distance bounds from origin are spherical for Euclidean distance,
diamond-shape for Manhattan distance and square for maximum dis-
tance.
Mahalanobis distance The Minkowski distances implicitly assume un-
correlated variables. This is often not true in the data analysis. One
solutation is to ”decorrelate” the variables by Mahalanobis distance:

d(xgi , xgj ) =
√

(xgi − xgj )Σ−1(xgi − xgj )′

Note that Euclidean distance is a special case of Mahalanobis distance
with identity covariance matrix. In cluster analysis, the matrix Σ is often
estimated by pooling all within-group covariance matrixes.
Gower’s distance Gower (1971) proposed an generalizable correlation
coefficient when variables span from numeric, binary, categorical to ordi-
nal. The general idea is the standardize the distance contribution of each
variable to be between 0 and 1. For example, for numerical variables, the
absolute differences are standardized by the largest possible value (i.e.
the range).
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9.1.2 Similarity measure

Pearson correlation and inner product Pearson correlation is defined
as

r(xgi , xgj ) =
cov(xgi , xgj )√

var(xgi) ·
√
var(xgj )

=

S∑
s=1

(xgis − x̄gi) · (xgjs − x̄gj )√
S∑
s=1

(xgis − x̄gi)2 ·

√
S∑
s=1

(xgjs − x̄gj )2

Pearson correlation is always between -1 and 1. If the gene vectors are
standardized to zero mean and unit variance, Pearson correlation reduces
to “inner product”:

r(xgi , xgj ) =

S∑
s=1

xgis · xgjs

As a result, Pearson correlation has an intuitive geometric interpretation
that it measures the “cos θ” of two vectors. In the standardized case,
Pearson correlation and Euclidean distance are equivalent in the sense
that d2 = 2−2 · r, where d is the Euclidean distance and r is the Pearson
correlation (Exercise 2).

When the underlying variables have a bivariate normal distribution,
the statistic

t = r

√
n− 2

1− r2

follows a Student’s t-distribution with degree of freedom S-2 under null
hypothesis (zero correlation). This also holds approximately even if the
observed values are non-normal, provided sample sizes are not very small.
Note that when the gene vectors are of very high dimension (e.g. several
thousands), the hypothesis testing is easily rejected even if the estimated
Pearson correlation is very low.

Spearman rank correlation
Pearson correlation is known to be sensitive to outliers. This can be a
major problem in high-throughput genomic data analysis where noises
and measurement errors are peppered in the data. A more robust alter-
native is to replace the original raw intensities by the ranks. This leads
to the Spearman rank correlation. It can be shown that if no rank ties,
the Spearman rank correlation can be written as

r(xgi , xgj ) = 1−
6 ·
∑S
s=1 d

2
s

n · (n2 − 1)
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where ds = xgis − xgjs (Exercise 3).

To test whether Spearman rank correlation is zero or not, one can use
permutation test or apply the t-test used in Pearson correlation. Another
Fisher transformation approach is to use the z-statistic

z =

√
S − 3

1.06
· arctanh(r) =

√
S − 3

1.06
· 1

2
ln

1 + r

1− r
.

Under null hypothesis (zero correlation), z-statistic approximately follows
a standard normal distribution. Note that Pearson correlation focuses to
detect linear correlation. Spearman correlation has an advantage to de-
tect non-linear association because of the rank statistics used. For exam-
ple, if the two vectors have quadratic relationship, Spearman correlation
generates correlation close to 1 while Pearson correlation cannot.

Other correlation measures for non-numeric variables When data
are not from numerical variables, different correlation measures have been
developed (e.g. biserial, polyserial correlations or Kendall’s tau correla-
tion). More details will be added in the future.

9.2 Clustering methods

9.2.1 Existing popular methods

Hierarchical clustering Hierarchical clustering is one of the most pop-
ular clustering algorithm in genomic research and it is probably also the
most misused one. The algorithm merges the ”nearest” two nodes at each
iteration. For G objects, G−1 iterations will construct a hierarchical tree.
To define the ”nearest” two nodes (each node contain one or multiple ob-
jects), different linkage can be pre-specified. Commonly used linkages
include single linkage (compute distance of the nearest pair), complete
linkage (comput distance of the furthest pair), average linkage (compute
average distance of all pairs) and centroid linkage (compute distance be-
tween centroids of two nodes). Single linkage tends to form elongated
clusters. Complete and average linkage tends to find more spherical clus-
ters. Note that the ordering of objects in the graphical presentation of
a hierarchical tree is not unique. The ordering can sometimes be mis-
leading in visualization. Since hierarchical clustering is an iterative local
agglomerative algorithm, mistakes can accumulate in the clustering pro-
cess of thousands of genes and the result has been found inferior than
global optimization methods such as K-means or model-based clustering.
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Likelihhod-based inference: model-based clustering and K-means
Many clustering methods are based on global optimization of a crite-
rion that measures compatibility of the clustering result to the data.
K-means and mixture Gaussian model-based clustering are examples of
this category. In the statistical literature, clustering is often obtained
through likelihood-based inference including the mixture maximum like-
lihood (ML) approach and the classification maximum likelihood (CML)
approach (see Celeux and Govaert 1993; Ganesalingam 1989). In the ML
approach, the Rd-valued vectors x1, · · · , xn are sampled from a mixture
of densities, f(x) =

∑k
j=1 πjf(x, θj), where πj is the probability that the

data is generated from cluster j and each f(x, θj) is the density for cluster
j from the same parametric family with parameter θj . The log-likelihood
to be maximized is

L = log


n∏
i=1

k∑
j=1

πjf(xi, θj)


and clustering is obtained by the assignment of each xi to the cluster
with greatest posterior probability. For more details refer to Fraley and
Raftery (2002); McLachlan et al. (2002).

In the CML approach, the partition C = {C1, · · · , Ck}, where Cj ’s
are disjoint subsets of X = {x1, · · · , xn}, is considered as an unknown
parameter and is directly pursued in the optimization. Two types of
CML criteria under different sampling schemes have been discussed in the
literature. The first criterion samples data of n1, · · · , nk observations in
each cluster, where nj ’s are fixed and unknown and

∑
nj = n. Following

the convention of Celeux and Govaert (1992), the C1-CML criterion takes
the form (see Scott and Symons, 1971)

C1(C, θ) =

k∑
j=1

∑
xi∈Cj

log f(xi, θj).

The second type assumes that observations are sampled at random from
the mixture distribution and thus n1, · · · , nk is a multinomial distribution
of sample size n and probability parameters π = {π1, · · · , πk}. The C2-
CML criterion leads to (see Symons, 1981)

C2(C, π, θ) =

k∑
j=1

∑
xi∈Cj

log{πjf(xi, θj)}.

It is easily seen that C2-CML can be viewed as a penalized C1-CML or that
C1-CML is a special form of C2-CML with an implicit equal proportions
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assumption (Bryant, 1991; Celeux and Govaert, 1992). Below, we restrict
f to be Gaussian distributed with θj = (µj ,Σj) and the C1-CML criterion
becomes

C1(C, θ) = f(x|C, θ) =

k∑
j=1

∑
xi∈Cj

log f(xi|µj ,Σj) (9.1)

where f(xi|µj ,Σj) =
exp{− 1

2 (xi−µj)T Σ−1
j (xi−µj)}

(2π)d/2|Σj |1/2
.

In addition to likelihood-based inference, many clustering methods
have utilized heuristic global optimization criteria. K-means (Hartigan
and Wong, 1979) is an effective clustering algorithm in this category and
is applied in many applications due to its simplicity. In the K-means
criterion, objects are assigned to clusters so that the within cluster sum
of squared distance is minimized.

L =

k∑
j=1

∑
xi∈Cj

|xi − x̄(j)|2

where x̄(j) is the mean of objects in cluster j. It can be shown that thatK-
means is actually a simplified form of the C1-CML sampling scheme under
the Gaussian assumption when the covariance matrixes are identical and
spherical in all clusters. The optimization of K-means is an NP-hard
problem. One simple solution is by EM algorithm (Exercise ??). Hartigan
and Wong (1979) provides a very faster algorithm. K-means algorithm
are generally faster (∼ O(N · K)) than other clustering algorithms but
all these algorithms encounter local optimization issues.

Note that K-means clustering requires objects to locate in an Eu-
clidean space (so that the cluster centers can be calculated). This can be
relaxed by replacing cluster centers by cluster medoids and it leads the
K-medoids (or Partitioin around medoids; PAM).

L =

k∑
j=1

∑
xi∈Cj

|xi − x̃(j)|2

where x̃(j) is the medoids of objects in cluster j. K-medoids is useful
in many applications when only dissimilarity measures are definded for
each pair of objects (Similar to PCA versus MDS in dimension reduction).
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9.2.2 Some advanced methods

Penalized and weighted K-means In Tseng (2007), a general class of
loss function extended from K-means is proposed for clustering purposes:

W (C; k, λ) =

k∑
j=1

∑
xi∈Cj

w(xi;P∼
) · d(xi, Cj) + λ|S| (9.2)

where w(·; ·) is a function of the weighting factor, P
∼

is the prior informa-

tion available, d(x,Cj) calculates the dispersion of point x in cluster Cj ,
| · | represents size of the set and λ is a tuning parameter representing
the degree of penalty of each noise point. The weighting factor w(·; ·)
is used to incorporate prior knowledge of preferred or prohibited pat-
terns of cluster selections. Minimizing equation (9.2) with given weight
function w(·; ·), distance measure d(·, ·), k and λ produces a clustering
solution. We denote by C∗(k, λ) = {C∗1 (k, λ), · · · , C∗k(k, λ), S∗(k, λ)} the
minimizer of W (C; k, λ). Proposition 1. lists several useful properties of
this formulation (Exercise 4). In particular, λ is inversely related to the
number of noise points (i.e. |S|). This is a desirable property to control
tightness of the resulting clusters in practice.

Proposition 1. (a) Similar toK-means if k1 > k2, thenW (C∗(k1, λ); k1, λ) ≤
W (C∗(k2, λ); k2, λ). (b) If λ1 > λ2, then |S∗(k, λ1)| ≤ |S∗(k, λ2)|. (c) If
λ1 > λ2, then W (C∗(k, λ1); k, λ1) > W (C∗(k, λ2); k, λ2).

Note that K-means and K-medoids are special cases of the general
class of PW-Kmeans. We can consider a simpler penalized K-means form
without weights:

WP (C; k, λ0) =

k∑
j=1

∑
xi∈Cj

|xi − x̄(j)|2 + η2 · λ0|S| (9.3)

where λ0 is a tuning parameter, η = H/ S
√
k, H is defined as the aver-

age pairwise distance of the data and S is the dimensionality of the data.
The purpose of H and S

√
k is to avoid the scaling problem of the penalty

term. Under this formulation, the selection of λ0 is invariant under data
scaling and different k. In contrast to K-means, P-Kmeans provides flex-
ibility of not assigning all points into clusters and allows a set of noise
(or scattered) points, S. These points are defined as noises that do not
tightly share common patterns with any of the clusters in the data. For
clustering problems in complex data such as gene clustering in expression
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profiles, ignoring scattered points has been found to dilute identified pat-
terns, make more false positives and even distort cluster formation and
interpretation. Similar to K-means, we can find relationships between
penalized K-means and classification likelihood. If the scattered points
in S are uniformly distributed in the hyperspace V (i.e. generated from
a homogeneous Poisson process), then the C1 CML criterion becomes

f(x|C, θ) =

k∏
j=1

∏
xi∈Cj

f(xi|µj ,Σj)
∏
xi∈S

1

|V |
, (9.4)

where |V | is the hypervolume of V (see a similar model in Fraley and
Raftery, 2002). Assume Σj = σ2

0I. We find that maximizing (9.4) is
equivalent to minimizing (9.3) if λ0 = 2σ2

0 · (1/η)2 · log |V |. This relation-
ship provides good guidance for the selection of λ0.

Tight clustering and other heuristic methods methods Tight gene
modules with similar gene expression patterns often imply gene co-regulation
or share related biological functions and are basic elements in many ge-
nomic exploratory data analyses. In the Tight Clustering method (Tseng
and Wong, 2005), it directly identifies small and tight clusters in the data
and allows a set of scattered genes without being clustered. The method
utilizes resampling techniques to obtain consistent tight clusters in re-
peated subsampling evaluations. Since the method is based on resam-
pling techniques, the computation demand is higher and the result can
depend on the sampling seed or small data perturbation.

Many other heuristic clustering methods exist. For example, Con-
sensus Clustering (Monti et al, 2003) and CLICK (Sharan and Shamir,
2000) are popular algorithms for gene clustering in microarray analysis.
Bayesian clustering Bayesian clustering has been developed for mi-
croarray data analysis (Medvedovic et al., 2002 and Qin 2006). One
important advantage is that the number of clusters does not need to be
specified a priori but can be inferred from the posterior distribution while
a major disadvantage of Bayesian clustering is the assumptions made be-
hind the Bayesian modeling.

9.3 Estimate the number of clusters??

Estimating the number of clusters is a difficult problem due to the lack
of true underlying class labels. Methods for this purpose will be added
in the future.
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9.4 Clustering evaluation??

As discussed above, evaluating performance of clustering methods is a
difficult task. More methods on this topic will be added in the future.
adjusted Rand index

Exercise:

1. Show that the maximum distance is a special case of Minkowski
family when k →∞.

2. Show that when gene intensity vectors xgi and xgj are standardized
to zero mean and unit variance, d2 = 2−2·r where d is the Euclidean
distance and r is the Pearson correlation of the two genes.

3. Show that Spearman correlationi can be calculated in the simpler

form r(xgi , xgj ) = 1− 6·
∑S

s=1 d
2
s

n·(n2−1) if no rank tie exists.

4. Prove Proposition 1 in Penalized and weighted K-means.

5. Prove that K-means is a special case of C1-CML criterion in 9.1
under Gaussian assumption and when the covariance matrixes are
identical and spherical.


